How Do Growth and Sibling Competition Affect Telomere Dynamics in the First Month of Life of Long-Lived Seabird?
نویسندگان
چکیده
Telomeres are nucleotide sequences located at the ends of chromosomes that promote genome stability. Changes in telomere length (dynamics) are related to fitness or life expectancy, and telomere dynamics during the development phase are likely to be affected by growth and stress factors. Here, we examined telomere dynamics of black-tailed gull chicks (Larus crassirostris) in nests with and without siblings. We found that the initial telomere lengths of singletons at hatching were longer than those of siblings, indicating that singletons are higher-quality chicks than siblings in terms of telomere length. Other factors likely affecting individual quality (i.e., sex, laying date, laying order of eggs, and clutch size) were not related to telomere lengths. Within broods, initial telomere lengths were longer in older chicks than in younger chicks, suggesting that maternal effects, which vary with laying sequence, influence the initial lengths. Additionally, telomeres of chicks with a sibling showed more attrition between hatching and fledging than those of singleton chicks, suggesting that being raised with siblings can cause a sustained competitive environment that leads to telomere loss. High growth rates were associated with a low degree of telomere shortening observed in older siblings, perhaps because slower growth reflects higher food stress and/or higher aerobic metabolism from increased begging effort. Our results show that developmental telomere attrition was an inevitable consequence in two-chick nests in the pre- and post-hatching microenvironments due to the combination of social stress within the nest and maternal effects. The results of our study shed light on telomere dynamics in early life, which may represent an important physiological undercurrent of life-history traits.
منابع مشابه
Sibling bullying during infancy does not make wimpy adults.
Despite frequent suggestions that dominance-subordination relationships in infancy can affect subsequent agonistic potential during adult life, to our knowledge no explicit test has been made. Experiments have shown that adverse conditions during early development can have long-term effects on a variety of traits ranging from growth to competitive behaviour. In many vertebrate species, the main...
متن کاملVariation in early-life telomere dynamics in a long-lived bird: links to environmental conditions and survival
Conditions experienced during early life can have profound consequences for both short- and long-term fitness. Variation in the natal environment has been shown to influence survival and reproductive performance of entire cohorts in wild vertebrate populations. Telomere dynamics potentially provide a link between the early environment and long-term fitness outcomes, yet we know little about how...
متن کاملHow Do Palladium Complexes Affect on Coil Structure of Human Serum Albumin in the Presence of Carbon Nanotube? A Molecular Dynamics Study
To investigate the interaction and adsorption of drug and carbon nanotube on human serum albumin, three anti-cancer drugs ([Pd(phen)(R-gly)]NO3, R = methyl, propyl and amyl) with different hydrophobic tails and anticancer activities were selected. These drugs have better anti-tumor activity and less side effects than that known cis-platinum drug. Human serum albumin is also ...
متن کاملThere is more to climate than the North Atlantic Oscillation: a new perspective from climate dynamics to explain the variability in population growth rates of a long-lived seabird
Citation: Mesquita MdS, Erikstad KE, Sandvik H, Barrett RT, Reiertsen TK, Anker-Nilssen T, Hodges KI and Bader J (2015) There is more to climate than the North Atlantic Oscillation: a new perspective from climate dynamics to explain the variability in population growth rates of a long-lived seabird. Front. Ecol. Evol. 3:43. doi: 10.3389/fevo.2015.00043 There is more to climate than the North At...
متن کاملBottom of the Heap: Having Heavier Competitors Accelerates Early-Life Telomere Loss in the European Starling, Sturnus vulgaris
Early-life adversity is associated with poorer health and survival in adulthood in humans and other animals. One pathway by which early-life environmental stressors could affect the adult phenotype is via effects on telomere dynamics. Several studies have shown that early-life adversity is associated with relatively short telomeres, but these are often cross-sectional and usually correlational ...
متن کامل